Factors Determining an Intraocular Lens Power

Kazuno Negishi
Department of Ophthalmology, Keio University School of Medicine

The major factors in determining intraocular lens power were reviewed. There are two main methods of measuring axial length: ultrasound and optical coherence. The optical method is non-contact, instant (0.5 seconds per measurement), easy to operate and accurate, although it cannot be used in cases with dense opacity on the visual axis, such as corneal opacity, dense cataract or vitreous hemorrhage. At present, it is important to intraocular lens power select the appropriate method and select the data. The predictability is insufficient in eyes with abnormal corneal shape, such as post-corneal refractive surgery eyes, which have increased in number recently. Data before refractive surgery should at least be useful in improving predictability. Therefore, it is clinically important to keep data obtained before refractive surgery.

Key Words: Intraocular lens, Axial length, Corneal refractive power, Eyes with an abnormal corneal shape, Refractive surgery

別刷請求先：160-8852 東京都新宿区信濃町35 慶應義塾大学医学部眼科学教室 根岸一乃
(2007年1月7日受理)
Reprint requests to: Kazuno Negishi Dept of Ophthalmol, Keio Univ School of Med
35 Shinnanomachi, Shinjuku-ku, Tokyo 160-8852, Japan
(Received and accepted January 7, 2007)
視覚の科学 第28巻第1号

り測定精度が異なることが欠点である。超音波式による眼軸長測定機器の誤差は0.1mm程度とされているが、白内障術後の予測屈折値の誤差の許容範囲が±0.5Dであるとすると、眼軸長評価誤差の許容範囲は0.2mm程度である。したがって、超音波式による測定の場合、計測誤差が大きくなりないように測定データをその場でチェックして取捨選択することが重要である。測定値がばらついている場合は、前視不良、後部ぶどう腫、外傷後、角膜の圧迫、ブリーチ先端の異物の存在などを考慮して、必要に応じて計測を直す。また、測定波形が典型的でない場合、眼軸長が屈折値に相関しない場合も計測ミスを考え、必要に応じて計測を直すことが重要である。
一方、近年普及している光学式測定は、非接触にて測定可能で、測定時間が短く（1回約0.5秒）、手技が容易で精度が低い。光学式測定機器の誤差は0.03mm以下とされている。したがって、光学式の場合、眼軸長の測定誤差による影響はかなり排除できる。点眼麻酔が必要であり、超音波式では測定困難な眼鏡過多の症例や高齢者を認めることができる症例、体位保持が困難な症例、恐怖感の強い症例、小児などの症例でも比較的容易に測定可能である。検者の熟練度による測定値のばらつきもない。また、光軸上ではなく常に関軸上で測定するため、高度近視症例では後部ぶどう腫など眼球形状の影響を受けないこと、より正確に安定して軸長が測定できるという利点がある（図1）。

しかし一方では、角膜混濁や進行した白内障、硝子体出血などの視軸上に強い混濁を有する症例では検出できる光の強度が低下するため、測定困難となる症例が多いという問題点もある。全体の7〜12%程度は眼軸長測定が不能であるという報告もある。

3. 角膜屈折力の評価（角膜屈折矯正手術後）

現在、通常の術前検査においてはオートケラトメータの測定値がIOL度数計算に用いられている。しかしながら、近年的に増加している角膜屈折力矯正手術後眼をはじめとする角膜形状異常眼において、この値を用いることは問題がある。すなわち、オートケラトメータでは角膜をトーリック面と仮定して角膜前面中央3mm付近の円周を測定していること、換算屈折率を使用していることが誤差につながる。更に、
現在用いられている第三世代のIOL計算式（SRK/T, Holladay式など）では、角膜屈折力の前房深の予測に用いるため、角膜屈折力の測定誤差は前房深の測定ミスにもつながる。角膜屈折測定後の角膜屈折力の評価法としては、角膜屈折測定前の測定データを用いるClinical History method（History-derived method）と、術前データを用いない他の方法（Contact Lens Overcorrection method、角膜形状解析装置による測定など）がある。

近年は、角膜の前後面の形状を測定できる角膜形状解析装置によって測定した角膜屈折力の値が用いられることが多い。代表的なものはオーブスキャンのTotal optical powerやベンタカムのTrue net power、Equivalent K readingsなどであるが、これらを用いた角膜形状異常眼におけるIOL度数の予測精度は必ずしも良好ではない。Aramberriは前房深の予測に術前のオートケラトメトリ、角膜屈折力の計算に術後のオートケラトメトリを用いるDouble-K methodを提案している。この方法は、術後データのみを計算するよりは精度が良好であるが、通常の白内障IOL度数計算と比較すると不十分であり、また術前データの存在が必要であることが欠点である。その他にも角膜屈折力の評価ではなく、角膜屈折測定の適正な量を用いて角膜屈折測定手術後のIOL度数を予測する方法（Feiz-Mannis method）が発表されているが、予測精度は十分ではなく、術前データが必要であることも欠点である。

4. おわりに

正常眼におけるIOL度数の予測精度は、光学式測定による測定誤差の減少も手伝ってかなり向上している。角膜屈折測定術が急速に普及している現在、角膜屈折測定術に含まれる角膜形状異常眼における予測精度の向上は急務であろう。将来的には、角膜屈折測定術ばかりでなく、有水晶体IOL挿入眼や二つの屈折測定術を組み合わせたBiopics術後眼など、更に複雑な光学系をもつ白内障眼に出すと考えられる。

前述のごとく、角膜形状異常眼におけるIOL度数の予測精度は不十分であるが、少なくとも屈折測定術前測定データの存在は精度向上のために有用であり、これをなんらかの形で保管しておくことも現状においては臨床上重要であると考えられる。

文 献

不正乱視の基礎と臨床研究（1）
ザイデル収差とゼルニケ多項式的関係

大沼 一彦
千葉大学工学部メディカルシステム工学科

Fundamentals of Irregular Astigmatism and Clinical Research (1)
Relation between Seidel Aberration and Zernike Polynomial

Kazuhiko Ohnuma
Department of Medical System Engineering, Faculty of Engineering, Chiba University

波面センサーによって光眼学系の光学特性が測定でき、それらから導かれる網膜上の点像、またそれを使って得られる視覚の網膜像が得られる時代になった。ほとんどの波面センサーでは波面収差の表現にゼルニケ多項式が用いられている。今まで眼光学では、収差はザイデルの収差として学んできた。コマ収差、球面収差といわれるのと同じ収差ではないかと考えるが、実際は少し異なるのである。ザイデルの収差とゼルニケ多項式の関をつなぐことができればより収差に対する理解が深まり、ゼルニケの収差表現が有効に利用されることが期待できる。更にこのような収差があるときに、どのような網膜像になるのか、またどのような見え方になるのかを知ることは有効であると考えられる。今回から5回にわたって、筆者が収差の解説および網膜像の特性を述べ、収差の研究をされている眼科医が臨床から得られた知見を述べる。（視覚の科学 28: 6-14, 2007）

キーワード：ザイデル収差、波面収差、ゼルニケ多項式

Wavefront sensors measure the performance of eye optics. The point-spread function and optotype images on the retina can be derived and calculated from the measured wavefront. Most wavefront sensors use the Zernike polynomial to represent wavefront aberration. When we hear the terms “spherical aberration” and "coma aberration", we consider them the same as the Seidel aberration. But in fact they differ slightly. Understanding the relation between the Seidel aberration and the Zernike polynomial deepens understanding of aberration; it is expected that the Zernike expression will be used effectively. Furthermore, it is effective to know what kinds of images are cast on the retina by the eye with aberrations. I will describe aberration and the characteristic of retinal images in five times of serialization, and ophthalmologists who research aberration will describe the knowledge acquired from their clinical research.

(Jpn J Vis Sci 28: 6-14, 2007)

Key Words: Seidel aberration, Wavefront aberration, Zernike polynomial

別刷請求先：263-8522 千葉市稲毛区弥生町1-33 千葉大学工学部メディカルシステム工学科 大沼一彦
(2007年1月26日受理)
Reprint requests to: Kazuhiko Ohnuma Dept of Med System Engineering, Faculty of Engineering, Chiba Univ 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
(Received and accepted January 26, 2007)
1. はじめに

諸先輩方による眼光学の書籍では、収差が起きる原因とその呼び方をサイダルの表現によって分類している。そこでは、収差は光線の表現で行われていて、波面の形の表現は用いられていない。最近、quality of vision (QOV) が叫ばれ、波面センターが、が世の中に出てきて、いきなりゼルニケ多項式による収差の表現がこれに付随して出てきたので、非点収差、球面収差と聞いただけで、昔懐かしたサイダルの収差と同じであると思っている方が大半ではないかと思われる。非点収差、球面収差でも実は違いがある。その違いをここではまず、サイダルの収差を光線での説明から波面での説明へ直し、ゼルニケ多項式による波面収差の表現の考え方を示し、最後にサイダルとゼルニケの表現の関係を示す。ここでの説明にはわかりやすいに重点をおいたので、厳密さを求める方にはお叱りを受けるかもしれないが、ご容赦いただきたい。

2. サイダルの5収差と波面

はじめに理想的なレンズの光線と波面について述べる。図1には無限遠から発する光が無収差レンズを通過して、点像を作る様子が示されている。図1に示すように波面は光線に垂直な面である。その面をつなぐと焦点 P (0, 0, R) を中心とする球面となる。式 (1) であるとすると、R を中心とした半径 R の球の式である。

\[x^2 + y^2 + (z - R)^2 = R^2 \] \hspace{1cm} (1)

式 (1) を書き直すと、式 (1') になる。

\[x^2 + y^2 + z^2 - 2zR = 0 \] \hspace{1cm} (1')

式 (1') で、R, x, y に比べて z が小さい場合を考え（現実もそうなのであるが）、z を無視すると式 (2) になる。

\[z = \frac{x^2 + y^2}{2R} \] \hspace{1cm} (2)

これが波面の式である。波面の式としてあらわすと、

\[w(x, y) = \frac{x^2 + y^2}{2R} = A(x^2 + y^2) \] \hspace{1cm} (3)

となる。つまり、波面は出射瞳面での z の値であらわれる。ここで、A = 1/2R の関係がある。つまり、A がわかると R がわかり、どこに収束する波面であるかがわかる。なんらかの要因で A が少し変化したとしよう、そうすると R が変わるということは焦点が移動することになる。つまり、デフォーカスである。

次に、波面と像面での移動の関係をみよう。図2に示すように、今度は波面から光線を求める。波面の傾きは波面を微分すればよい。光線はその微分した値に -1 を掛けて求めることができる。高等学校で接線の傾きとその接線に直角に交わる直線の傾きを掛けると -1 になると学んだことを思い出す。その直
線の傾きに像面までの距離 \(R \) を掛けると，像面での
位置ずれ量になる。\(x \) 方向の微小量を \(\Delta x \) とすると，\(x \)
方向の波面の傾き \(a_x \) は（4）式で与えられる。

\[
\alpha_x = \frac{w(x, y)}{\Delta x}
\]

（4）

また，像面での \(x \) 方向におけるずれ量を \(\varepsilon_x \)
とすると，（5）式で与えられる。

\[
\varepsilon_x = -R\alpha_x = -R \frac{w(x, y)}{\Delta x}
\]

（5）

（5）式は，出射瞳面の中心から周辺までの長さを 1
としたときの相対的な半径を \(h \) とするときのもので
ある。

\[
\varepsilon_x = -\frac{R}{h} \alpha_x = -\frac{R}{h} \frac{w(x, y)}{\Delta x}
\]

（5）'

さて，これらの準備をして，波面を出射瞳の座標
\((x, y)\) と像面の座標 \((x_0, y_0)\) であらわしてみよう。
このとき，像点が必ず \(x_0 \) 上にあると仮定しても一般
性が失われないので，レンズの波面は式（6）で示さ
れる（\(O \) は高次の収差の項）。

\[
w(x, y, x_0) = w(x^2 + y^2, a_x x_0, a_y)
\]

\[
= a_x (x^2 + y^2) + a_x a_y x_0 + a_y + b_x (x^2 + y^2)^2
\]

\[
+ b_y a_x (x^2 + y^2) + b_y a_y x_0 + b_y + O_6
\]

（6）

これは，ここで扱うレンズが回転対称をしている
ことから導かれる。式（6）がどうやって導かれるか
については，文献を参考にしていただきたい。

a の係数がついているのは，2 次の収差である。\(a_1 \) の
係数があるのは，先ほど述べたようにデフーカス
である。波面の形は図 3 に示す球面である。\(a_2 \) の係数
があるのはティルトである。これは次のように理
解できる。\(x_0 = c \) （\(c \) は定数）となる場所で考えると
すると，波面は \(x \) に比例していることを示している。
つまり，\(x \) が増大すると波面もそれに比例して増大す
ることであり，これは図 4 に示すように単純に傾い
た面である。これに直行する光線もどの場所でも同
じ傾きとなる。つまり，ある方向へ一様に傾いた光
線である。プリズムのようなものを通過した波面で
ある。これは，レンズが傾いたときに起る。\(a_3 \) の
係数があるものは \(x_0 = c \) で考えると，\(x \) と \(y \) に
は関係ない量であることがわかる。そのため，これは点
像には関係しない。

b の係数のついたものが 4 次の収差であり，はじめ
の 5 つがサイデルの 5 収差である。サイデルの 5 収
差を説明する前にもう一つ別の表現も示す。

図 5 に示すように，\(x, y \) を半径 \(\rho \) と角度 \(\theta \) であらわ

図 4 ティルト
プリズム通過後の波面，レンズが傾くと発生する収差

図 5 座標変換
すと、\(x = \rho \cos \theta, y = \rho \sin \theta\) となる。式（6）であらわされる波面を \(\rho, \theta\) であらわすと \(x^2 + y^2 = \rho^2, x_{00} = x \rho \cos \theta\) となり、\(x_{00}, \rho \cos \theta\) のべき乗の積の式であらわされることになり、式（7）ようになる。

\[
w(x_{00}, \rho, \theta) = \sum_{i,j,k} w_{i,j,k} x_{00}^i \rho^j \cos^k \theta \\
k = 2j + m, \ l = 2n + m
\]
式（7）の一部を以下に展開して示す。

\[
w(x_{00}, \rho, \theta) = w_{220} x_{00}^2 + w_{111} x_{00} \rho \cos \theta + w_{020} \rho^2 + w_{010} \rho^4 \\
+ w_{110} x_{00} \rho \cos \theta + w_{220} x_{00}^2 \rho^2 \cos \theta \\
+ w_{220} x_{00}^2 \rho^2 + w_{310} x_{00} \rho \cos \theta
\]
式（6）の係数と \(w_{i,j,k}\) の関係は、\(a_1, a_2, a_3, b_1, b_2, b_3, b_4, b_5, b_6, b_7\) である。この波面の式のなかで、サイドエルの収差だけの部分を取り出す。つまり、\(b_1, b_2, b_3, b_4, b_5, b_6, b_7\) の係数の項の部分をサイドエルの収差係数 \(S_i\) であらわすと、式（8）となる。

\[
w(x_{00}, \rho, \theta) = \frac{1}{2} S_1 x_{00}^2 + \frac{1}{4} S_2 x_{00}^2 \rho \cos \theta \\
+ \frac{1}{2} S_3 x_{00}^2 \rho^2 \cos \theta + \frac{1}{4} (S_1 + S_1) x_{00}^2 \rho^2 \\
+ \frac{1}{2} S_5 x_{00} \rho \cos \theta
\]
サイドエルの収差係数と \(w_{i,j,k}\) の関係を表1に示す。

それでは、サイドエルの5収差の波面を順に説明しよう。

1）球面収差（\(S_1\)）

図6には一般的な凸レンズに光軸に平行な平行光が入射したときに、レンズの周辺を通過した光が光軸に早く交わる様子が示されている。図6の右側には、入射高とその交わる点の位置関係が示されている。また、光が一番収束するところを最小輝乱円の位置として示している。従来のテキストではここまでであった。

それでは、波面の考え方でみよう。レンズを通過した直後の光線に垂直な面を作る、無収差の場合よりも周辺部が急傾斜であるのがわかる。これは無収差の場合の球面に、新たに波面が加わったとみることができる。実は図6の上部に描いてあるように、二つの面の合成である。もう一つの面の形状はレンズの中心からの距離（半径 \(\rho\) とする）の4乗 \(w_{000} \rho^4\) である。これがサイドエルの球面収差の波面である。

この図6では \(w_{000}\) は正で正の球面収差を呼ぶ。この球面収差のために一点に集まらないのである。像面での交点を求めるために、\(w(x, y) = w_{000} \rho^4\) を式（5）に代入すると、像面での交点が次のように求められる。

\[
\delta x = \delta \rho, \ \delta \rho = 4 \rho \delta \rho
\]

これをみると、瞳の中心からの距離 \(\rho\) の3乗に比例して像がずれるのがわかる。それだけポケることになる。

2）コマ収差（\(S_2\)）

図7はレンズの光軸から外れたところに置かれた点光源からの光をあらわしている。像は彗星が尾を引いた形状をしているので、コマ（coma）収差と呼ばれている。これは、レンズの周辺を通過した光が大

| 表1 波面収差の係数とサイドエル収差の関係 |
|------------------|------------------|------------------|
| 波面収差の係数 | サイドエルの収差係数 | 式による表現 |
| \(w_{100}\) | \(x_{00}^2\) | ピストン |
| \(w_{111}\) | \(x_{00} \rho \cos \theta\) | ティルト |
| \(w_{220}\) | \(\rho^2\) | （デ）フォーカス |
| \(w_{341}\) | \(\frac{1}{2} S_1\) | 球面収差 |
| \(w_{111}\) | \(\frac{1}{2} S_1\) | コマ収差 |
| \(w_{222}\) | \(\frac{1}{2} S_1\) | 赤点収差 |
| \(w_{350}\) | \(\frac{1}{2} (S_1 + S_1)\) | 像面収差 |
| \(w_{111}\) | \(\frac{1}{2} S_1\) | 球面収差 |

![図6 球面収差](image_url)
きな円としての像を作る。その半径はレンズの中心からの距離に依存している。波面前であると、図7の右上に示すように上が凸で、下が凸んだ形をしている。ここで、図4で説明したように焦点を結ぶフォーカス成分があるが、それは示していない。更にこの波面を式で示すと、$x_0 \rho \cos \theta$となる。つまり、出射瞳の半径の3乗に比例し、また像面の位置x_1に比例してその値が大きくなり、これに$\cos \theta$がかかっているので、$\theta = 90^\circ$から90°までは正の値でそれ以外は負の値となる。

像面での交点を求めると、式（10）となる。

$$e_x = -\frac{2R}{h} w_{131} x_0 y, \quad e_y = -\frac{R}{h} w_{133} x_0 (3x^2 + y^2) \cdots (10)$$

このe_xとe_yの関係は半径$rac{R}{h} w_{131} x_0 \rho$と中心$rac{2R}{h} w_{133} x_0 \rho^2$である。ここで$h$は瞳の半径である。

このような状態は、斜めから光が入る周辺視、laser in situ keratomileusis（以下 LASIK）で軸が外れて切った場合、intraocular lens（以下 IOL）が傾いた場合、またIOLが軸ずれを起こした場合に発生する収差である。

3）非点収差（S_3）

図9はこれもレンズの光軸から外れたところに位置された点光源からの像をあらわしている。2箇所で焦線がみられる非点収差の例である。タンジェンシャル面とサジタル面で焦点が変わっている。この場合の波面をみると、図9の右下に示すように、タンジェンシャル面が進んでいるような波面である。なお、ここで焦点を結ぶフォーカス成分もあるが、それは示していない。波面の形をみると、平たい紙を一方向へ押しつけたような形である。式でみると$x_0 \rho \cos \theta$となる。つまり、x_0が大きくなると、その2乗に比例して波面の曲がり具合も大きくなることを示している。この式は0°と180°方向で値が大きく、90°と270°方向で0であることを示している。像面での交点を求めると、式（11）となる。

$$e_x = -\frac{2R}{h} w_{222} x_0^2 x \cdots (11)$$

これは、サジタル面には収差がないため、移動が起こらないことを示している。

この収差もコマ収差と同様に、周辺視、LASIKで軸が外れて切った場合、IOLが傾いた場合、またIOLが軸ずれを起こした場合に発生する。

4）像面曲率（S_4）

この波面は、式（3）で示したフォーカスの波面である。式をみると$x_0 w_{222} \rho^2$となっているので、像面での位置x_0の2乗に比例して、その量が変わるデフォーカスの波面である。つまり、像面において光軸の中心から離れると、焦点が短くなることを示している。像ができる場所がレンズの方向に近づいてくることに
なる。その様子を図10に示す。この面をペッツパール面と呼んでいる。非点収差の波面の式とよく似ている。\(\cos \)の項が違うだけである。非点収差と像面渦曲がある場合は、図11のようにタンジェンシャル面とサジタル面のフォーカスがずれることをあらわしている。

5) 矮曲収差 (\(S_6 \))

この波面は式 (6) の \(a_5 \) の係数で説明したティルトの波面である。式で示す \(W_{31} x_{0} \) であるので、ティルトの量が、像面の位置 \(x_{0} \) の3乗に比例して変わるところを示している。つまり、中心から離れていくと大きさティルトの量が変わる。図12には\(\beta \)の角度で入射した光がプリズム成分によって角度を変化している様子が示されている。このようなときは \(W_{31} \) の量が正で、僕のように膨れる。一方、負の時は収巻きのようになる。像面での交点式は (12) で与えられる。

\[
\varepsilon_z = - \frac{R}{h} W_{31} x_{0}^3
\]

(12)

以上で説明してきた波面をまとめて図13に示す。
ザイデル収差の波面について述べてきたが、像面での位置 \(x_{0} \) に依存している項がいくつもあったのをみてきた。つまり、レンズへの入射角度によって収差量が変わることを示している。また、これまで光線として考えてきたこれらの収差がレンズを通過した後、どのような波面となるのかを理解されたと思う。それでは次にゼルニケ多項式との関係を説明する。

3. ゼルニケ多項式による収差の表現

今までは、軸上、軸外れの場合について述べてきたが、ゼルニケ多項式が扱うのは平行光線が光軸に平行に入射した場合である。つまり、軸外れは扱わない。このような表現は適切ではなくて、「入射光線の方向の収差のみをあらわす。」といった方がいいと思う。つまり、ザイデルでは像面の座標 \(x_{0} \) も収差の表現にはあったが、ゼルニケ多項式にはない。

光軸に平行に入射したときにもコマ収差、非点収
差は発生する。図14に示すように、眼球光学系において角膜、水晶体を一つのレンズと考えると、その形状が回転対称でなくなるとこれらは発生する。それでは、像面歪曲、歪曲収差はどうするのだろうか？像面歪曲、歪曲収差についてはレンズに入射する光線の傾きを少しずつ変えた場合なので、像面歪曲、歪曲収差として全体的な形としては扱わないことになる。このときは、軸外れから光を入れたときのデフォーカス量とティルトの量であらわすことになる。ゼルニケ多項式が扱うのは、あくまでも入射方向のみの収差量である。

ゼルニケ多項式による収差の表現を図15に示す。これらはゼルニケの基本波面で、2次、3次、4次を示す。図15には、1次ずつティルトの収差のところで例示したものである。それらのあらわすのが二つあり、x方向とy方向に傾いた平面の波面である。この波面に垂直な光線を考えると、どんなふうに光が振舞っているのかが想像できる。ここでのZ_{2}^{m}とZ_{2}^{v}が非点収差の波面と呼ばれている。Z_{2}^{m}はデフォーカスである。また、Z_{3}^{m}とZ_{3}^{v}はコマ収差、Z_{3}^{1}とZ_{3}^{v}はトレイフル、Z_{4}^{1}は球面収差と呼ばれている。それでは、1次波面の2次波面と見比べると、似ているけれどもデフォーカスの波面以外は少しずつ違うことに気付かれたと思う。その違いは次のところだと述べることになる。

次に、ゼルニケの基本的な考え方を図16に示す。ある波面が与えられたときに、そこに基本波面がどのくらい含まれているかを計算する。この例で説明すれば、非点収差が0.2μm、デフォーカスが0.4μm、球面収差が0.2μm含まれていることを示している。しかし、よく波面を観察したかった。ティルトのところでも説明した非点収差の波面ではない。また、球面収差でも異なっている。なぜこのようなことがなるのか、それはゼルニケが基本波面は互いに独立した波面を選んだからである。互いに独立とはちょっとxA、y平面のようなもので、この平面上の点と原点を結ぶ直線のベクトルがx成分とy成分に分けられ、それぞれがどのくらい含まれているかを調べるのである。このときxAとyは独立である。独立であるということは、xAの値をyで表わすことはできないということである。このように波面を独立した基本波面の重み付けで表現しようとしたのがゼルニケである。これは波面センサー
で測定された波面を独立した波面に分解してみて、どのような波面が含まれているかを調べるということと結びつく。サイデルの方はそのような考え方ではない。しかし、そのために本来の物理的な現象から少しずれを生じることになってしまった。これまで中心対称のレンズ系ばかり扱ってきたサイデルに加えて、新しい形の波面があることに注目したい。例えば、3次収差のZ₃⁻⁻³、Z₃はトレフォイルと呼ばれるものである。これまでは、加療とともにあらわれるので、三重視の原因である。3次収差であるトレフォイルとコマ収差をすべてひとまとめにして、その量の2乗のルート（root mean square RMS）で、コマ様収差、また同様に4次収差をひとまとめにして球面様収差として扱う場合がある。

4. サイデルとゼルニケの関係

非点収差や球面収差は名前だけが同じで、サイデルとゼルニクでは違いがあるのを理解されたと思う。そこで、その違いを詳細に調べてみよう。まずは非点収差である。図17に示すように、ゼルニケの非点収差の波面は軸のような形をしてZ₅⁻⁻²、Z₅の2つある。式であらわすと、\(\sqrt{6} \rho^2 \sin 2\theta \) と \(\sqrt{6} \rho^2 \cos 2\theta \)（\(\sqrt{6} \) は係数で、標準化のためのもの）である。これらは、回転すると重なる波面である。さて、2番目の式を展開すると、\(\sqrt{6} \rho^2 \cos 2\theta = \sqrt{6}(2\cos^2\theta - 1) \) となり、これはサイデルの非点収差の波面-デフォーカスの波面という形である。そのため、デフォーカスの波面をひっくり返したのを図に示す（サイデルの式のなかで\(\alpha \)が消えているが、これは\(\alpha = c \)のところの波面である。つまり、光学系の焦点を求めることにこだわるデフォーカス成分を考えることになる。それでは、像面での点像はどうなるかということと、デフォーカス分が移動したところでは焦線となり、サイデルの収差の像と同じである。デフォーカス分も入ったままで丸い点の点像である。

その次は、コマ収差の波面である。図18に示すように、ゼルニクの基本波面ではZ₅⁻⁻²、Z₅の2つある。その波面の式は \(\alpha \sqrt{8(3\alpha^2 - 2\alpha) \sin \theta, a \sqrt{8(3\alpha^2 - 2\alpha) \cos \theta} \) である。これは図19に示すように、サイデルのコマ収差とプリズムからできている。プリズムの波面は像を移動させるだけなので、点像はサイデルでもゼルニクでも同じである。

最後は球面収差Z₆である。図19に示すように、中心が盛り上がっている形をしている。これはサイデル

![図17 サイデルとゼルニケの非点収差の波面の関係](image17.png)

![図18 サイデルとゼルニケのコマ収差の波面の関係](image18.png)

![図19 サイデルとゼルニクの球面収差の波面の関係](image19.png)
ルの球面収差とアフィーラスの波面からできている。式で示すと，\(a \sqrt{5(6a^4 - 6a^2 + 1)} \) となり，\(a \)の4乗がザイデルの球面収差であり，\(a \)の2乗がザイデルのアフィーラスである。つまり，アフィーラス成分がここにあるので，焦点を求めるときには，球面収差の係数も考慮することになる。しかし，アフィーラス成分は焦点移動なので，その分だけ移動したところでの点像是ザイデルもある。アフィーラス成分を入れたままでの点像はもちろん異なる。これは焦点移動が加わったときの球面収差の点像であり，大きな同心円の点像となる。プラストが気になる方がいらっしゃると思う。これは重ねた波面は積分するも0になるように作っている。プラストはそのためである。

5. まとめ

今回は，ザイデルの収差とゼルニケの多項式の関係を述べた。結論からいえば，焦点移動やプリズム分が異なるだけで，その分を取り除いてみれば網膜上の点像の形には変化はない。更なる知識を得るためには，参考文献を読んでいただきたい。また，とくにアリゾナ大学の光学研究所のWyant先生のホームページ（http://www.optics.arizona.edu/jowyan）にはたくさんの有用な教材や，ネットで楽しめるシミュレーションソフトがあるので，ぜひ参考にしていただきたい。

また，ここでは紹介しなかったが，角度を変えると重なる波面がゼルニケの波面にはある。これらの係数と角度という表現でそれを方法もあるので，その方法も異味のある方を参考にしていただきたい。

次回から4回にわたって，このような収差があるときの見え方についてシミュレーション結果を用いて解説する予定である。臨床の先生からは臨床的な知見を示されるので，比較されること理論だけではない問題もみつかると思われる。楽しみである。

ここで用いた多くの図は臨床眼科第60巻第13号（2006年12月号）の「屈折矯正手術に役立つ光光学」から許可を得て一部改編して転載した。

文献

1) 稲田 勝：Hartman-Shack センサー，前田直之，大鹿哲郎，不二門尚編，角膜トポグラファーと波面センサー，120～125，メディカルビュー社，東京，2002。
2) 藤枝正直：OPD スキャナ，前田直之，大鹿哲郎，不二門尚編，角膜トポグラファーと波面センサー，126～131，メディカルビュー社，東京，2002。
3) 黒田和也：Tschernign サイクル計，前田直之，大鹿哲郎，不二門尚編，角膜トポグラファーと波面センサー，132～134，メディカルビュー社，東京，2002。
4) 牛山善太：シミュレーション光学 第30回波面収差，写真工業 57: 94-97，1999。
5) 牛山善太：シミュレーション光学 第32回波面収差展開式における収差の分類，写真工業 57: 102-106，1999。
7) 大沼一彦：光学学の基礎－波面収差とPSF−。眼科 47: 345-356, 2005。
総 説

累進屈折カレンズの設計別種類と機能別用途

鈴木総太
東京眼鏡専門学校

Various Designs and Functions of Progressive Lenses

Sohta Suzuki
Tokyo Optometric College

従来からある単焦点レンズではレンズの屈折力が同じなら、レンズを通して得られる像は同じであった。しかし、累進屈折カレンズでは近用部のレンズの屈折力が同じでも、レンズの加入度が異なるか、レンズの種類が異なればレンズを通して得られる像は同じではなくなる。前者はレンズの構造に原因があり、後者はレンズの設計に原因がある。そこで、近用部のレンズの屈折力が同じ累進メガネについて、加入度を増加したときに起こる。レンズを通して得られる像の変化と加入度を変えずレンズの種類を変えたときに起こる。レンズを通して得られる像の変化を予測するために、累進屈折カレンズの度数分布を調査した。調査項目は、明視域を決定するのに必要な等価球面度数および近視域内の視力を予測するために必要な単焦点レンズ成分とした。累進屈折カレンズ5種類について、Add 1.00D, 2.00D, 3.00D の3段階の加入度、計15枚のレンズの近用部近用部それぞれの度数分布の測定結果を報告する。ここで得られたデータを利用して累進屈折カレンズを変更したとき、レンズを通して得られる像の予測が可能となった。

キーワード：累進屈折カレンズ、レンズ構造、等価球面度数分布、乱視度数分布、加入度

If we look through lenses of equal refractive power, we see the same images. But with progressive lenses of the same refractive powers and with additional powers, we cannot see the same images. This is due to the structures and by designs of progressive lenses. We measured five types of progressive lenses. The three additional powers 1.00D, 2.00D and 3.00D were prepared for each progressive lens. We report the results and estimates of the lenses. Using these data, we can estimate the images that will be obtained with progressive lenses.

(Jpn J Vis Sci 28: 15-21, 2007)

Key Words: Progressive lens, Structure of the progressive lens, Distribution of spherical equivalent, Distribution of astigmatism, Additional power

1. はじめに

累進屈折カレンズは、当初「塗装のない遠近両用レンズ」と呼ばれまで改良を重ねた結果、遠くから近くまで連続してどの距離で明視できるレンズとして、老眼の人に欠かすことのできないメガネとなっただ。現在では何十種類も累進屈折カレンズが市販されており、使用目的にあったレンズを見極めるのが難しくなっている。たしかに、レンズメーカー各社は自社製品の特性を発表して、レンズ選択の一助になるような努力をしているが、各社の表現方法が異なるため、その違いを明確に知ることは難しい。

単焦点両用レンズの時代では、屈折力が同じメガネなら同じ見え方をしていた（ただし、レンズ装用位置が同一場合）。しかし、累進屈折カレンズは適度数、加入度が同一でも、レンズの種類が異なれば

別紙請求先: 169-0073 東京都新宿区百人町2-26-10 東京眼鏡専門学校 鈴木総太
(2007年1月11日受理)
Reprint requests to: Sohta Suzuki Tokyo Optometric College
2-26-10 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
(Received and accepted January 11, 2007)
見え方が違ってしまう。また、遠用度数とレンズの種類が同じでも、加入度数が異なれば見え方が違ってしまう。初めて累進屈折力レンズのメガネを使う人はもちろん、同じ種類のレンズの加入度を強くしただけのとき、今まで使っていたレンズとは違う種類のレンズに変えるときなど、今までと見え方がどう変化するかを予測することはレンズ選びで重要な課題になる。

本研究では、メガネに関係がある人なら誰でも、手軽に累進屈折力レンズの特性をつかめる方法を探ることを目的にした。

2. 方 法

レンズを測定する器具として最も普及しているレンズメータを使って、累進屈折力レンズの特性をつかむことを前提とする。

1）測定部位

累進屈折力レンズには、遠用部の視力を重視したハードデザインレンズと歪み感の軽減を重視したソフトデザインレンズがある。それぞれのデザインの特徴を図1，2に示す。

図1，2から、遠用部水平方向の度数変化と近用部水平方向の度数変化を調べれば、レンズを掛けたときのおよその様子を予想できることがわかる。累進部の長さと度数変化に関しては累進帯長の違いなど、問題が多く簡便さという趣旨から外れるので、今後の課題とした。

2）横方向の測定の移動ステップ

中心窓の視角に相当するレンズ径を以下の仮定のもとに算出した。

眼の節点を角膜より7mm前方、レンズ角膜頂点間距離を12mm、中心窓の直径を視園5°と仮定すると、中心窓の視角に相当するレンズ径は約1.7mmとなる。

レンズメータの開口部径は直径4mmなので、4mmステップで測定して十分な情報が得られると判断した。

3）測定範囲

レンズの近視力が大きく影響するのは注視線の通過部位である。そこで、注視線の測定を行った。視距離5m、30cm、55cm、40cmにおける両眼注視線を測定した。5mでの測定では垂直方向の測定が検査室の関係で制限されたが、近方視時と大きな違いはみられなかった。近方注視線の測定結果を図3に示す。

注視線に相当するレンズ径を以下の仮定のもとに算出した。

角膜より13mm後方に回旋点があり、レンズ角膜頂点間距離を12mmと仮定すると、注視線に相当するレンズ径は半径約21mmとなる。

4）レンズメータでの測定範囲と測定ステップ

上記の結果より測定を遠用部中心、近用部中心それぞれについて、水平方向に4mmステップ、中心より左右24mmと決定した。

5）測定対象

代表的なレンズメーカー5社の一番出荷量の多い累進屈折力レンズについて、遠用部が平面でAdd

図3 近方注視線の測定結果

- - -:30binocular, - - - - -:35binocular, - - - - :40binocular

17
1.00 D, 2.00 D, 3.00 D のレンズを左右 2 組、計60枚の等価球面度数、乱視度数を測定した。測定は各レンズにつき 1 部位10回の測定を行った。

3. 測定結果

右眼用レンズの測定結果をハードデザインに近いものからソフトデザインに近いものの順に並べて、図 4 ～23に示す。

4. 考察に必要な資料

1) 球面度数の視力に与える影響

球面度数の変化が視力に与える影響を知るために、正常な視覚をもつ成人116名232眼について、人工的に屈折状態を変化させて視力に与える影響を調査した。結果を図24に示す。

図24より、プラス球面レンズが0.25 D 加わると視力が急激に低下することがわかる。一般に、球面成分は明視域内では視力に影響を与えないが、明視域外では遠点、近点からの距離に比例して視力は低下する。

2) 乱視成分の視力に与える影響

乱視成分があると明視域内では最小錯乱円視をするため、乱視度数に比例して視力が低下する。明視域外では球面度数と同じように視力低下を起こすが、網膜像に方向性を生じるため球面成分より形態変が損なわれ、視力低下は大きくなる。乱視成分が視力に与える影響を正常な視覚をもつ成人55名110眼の遠方視、近方視それぞれについて調査した。図25～28にその結果を示す。

単眼より両眼の方が視力が高いこと、信頼区間の下限でみると乱視成分が0.5 D を超えると視力が0.7以下になり、遠方視、近方視ともに見難さを自覚するおそれがあることがわかる。とくに近用部においては、最小錯乱円視となり、安定した視力をもつ視野を狭めていることが理解できる。

図4 A社遠用部等価球面度数分布

---+-- Add 1.00D， -- Add 2.00D， - Add 3.00D

図5 A社遠用部乱視度数分布

---+-- Add 1.00D， -- Add 2.00D， - Add 3.00D

図6 B社遠用部等価球面度数分布

---+-- Add 1.00D， -- Add 2.00D， - Add 3.00D

図7 B社遠用部乱視度数分布

---+-- Add 1.00D， -- Add 2.00D， - Add 3.00D

図8 C社遠用部等価球面度数分布
--- : Add 1.00D, ---- : Add 2.00D, --- : Add 3.00D

図9 C社遠用部乱視度数分布
--- : Add 1.00D, ---- : Add 2.00D, --- : Add 3.00D

図10 D社遠用部等価球面度数分布
--- : Add 1.00D, ---- : Add 2.00D, --- : Add 3.00D

図11 D社遠用部乱視度数分布
--- : Add 1.00D, ---- : Add 2.00D, --- : Add 3.00D

図12 E社遠用部等価球面度数分布
--- : Add 1.00D, ---- : Add 2.00D, --- : Add 3.00D

図13 E社遠用部乱視度数分布
--- : Add 1.00D, ---- : Add 2.00D, --- : Add 3.00D
5. 考 察

最もハードデザインに近いA社のレンズと、最もソフトデザインに近いE社のレンズを比較すると、遠用部はA社のレンズが明視できる視野が広いが、E社では加味度が強く現れるにしたがって狭まっていることが示される。一方、近用部をみると水平方向の観察はA社のレンズが加味度が強く現れるにしたがい著しく狭くなるが、E社はA社に比べれば広い領域を確保している。

同じ種類のレンズで、遠用部の屈折力が同じで加味度が増加したときをみてみる。A社のレンズは加味度が増えると反対側の視野の増加が少ないのでは、明視域内における視力低下は少ないが、加味度が増加するにつれ中心から25°付近より波ケが大きくなる。近用部の視力が安定している視野（乱視0.5D以下）は、Add 1.00Dで10°、Add 2.00Dで5°、Add 3.00Dで5°未満と順次減少している。一方、E社のレンズはAdd 2.00Dで約25°、Add 3.00Dで約18°と非常に狭くなり、常に顔を視野方向に向け続ける必要を生じる。近用部ではAdd 1.00Dで約18°、Add 2.00Dで約14°、Add 3.00Dで約9°と広くとられている。

同じ遠用度数、同じ加味度でのレンズ種類の交換を考えると、A社とB社の掛け代えやC社とD社の掛け代えでは、大きな違いを感じられないが、A社とC、D社の掛け代えは到底同じ度数のレンズとは感じられないことがわかる。

上述したように、同じ基準で各レンズを比較することで、今まで使っていたレンズを基準に抵抗なく掛け代えられるレンズをみつけることが可能になった。また、今まで使っていたレンズの不満を解決するために、我慢しなければならない違いもあらかじめ知ることができるようになった。

参考文献
1) 石原 惣：小眼科学、金原出版、東京、1973.
AC Master® を用いて測定したピロカルピン点眼後の水晶体厚の変化

前田征宏*，市川一夫*，宇陀恵子**
*社会保険中京病院眼科，**中京眼科

Changes in Human Crystalline Lens Thickness after Application of Pilocarpine Eyedrops as Measured by AC Master®

Masahiro Maeda*, Kazuo Ichikawa* and Keiko Uda**
*Department of Ophthalmology, Social Insurance Chukyo Hospital, **Chukyo Eye Clinic

【目的】ピロカルピンは毛様筋収縮により人工的調節緊張状態を作り出すために用いられている。AC Master®(Zeiss) を用いて、ピロカルピン点眼前後に前房深度（ACD）、水晶体厚（LT）の変化を測定し、視覚刺激による調節と薬物刺激による調節状態が同様であるかどうか検討する。

【方法】屈折異常以外の眼疾患を認めない正常眼10例10眼に対し、AC Master®を用いて2％ピロカルピン点眼前に調節負荷を0～4Dまですべて、ACD, LTを測定した。点眼後は15分ごとに90分後まで測定した。

【結果】点眼後LTは増加した。また、点眼後も調節負荷によりLTは変化し、調節は残存した。薬剤の影響は30～60分後に最大となり、その後徐々に戻りを認めた。点眼後水晶体後面の位置は時間とともに変化した。

【結論】点眼後も調節に伴うLTの変化を認め、また水晶体後面の位置変化を認めたことから、薬剤による調節状態では通常の調節と異なるということを考察する必要性が示唆された。

キーワード：ピロカルピン，調節，AC Master®，水晶体厚，水晶体後面

Purpose: Pilocarpine is used to induce accommodation because it contracts the ciliary muscle. We used the AC Master® (Zeiss) to examine crystalline lens thickness before and after pilocarpine application to determine whether there are any differences between stimulus-induced and drug-induced accommodation status of the anterior structures.

Methods: We measured 10 eyes of 10 normal volunteers with no history of ocular disease, trauma or surgery, other than ametropia. Anterior chamber depth and crystalline lens thickness were measured during accommodation before and after application of 2% pilocarpine. After pilocarpine application, measurements were taken every 15 minutes for 90 minutes.

Results: Crystalline lens thickness increased after pilocarpine application. There was residual accommodation, because crystalline lens thickness increased with accommodation after pilocarpine application. The maximum effect of the drug was seen 30 to 60 minute after application, the effect then gradually decreasing. The posterior surface of the crystalline lens moved.

Conclusion: These results suggest that we should take into consideration the possibility that drug-induced accommodation may differ from normal accommodation, because the change in crystalline lens thickness was seen during accommodation after pilocarpine application, and pilocarpine caused catastasis change in the posterior crystalline lens surface.

(Jpn J Vis Sci 28: 22-25, 2007)

Key Words: Pilocarpine, Accommodation, AC Master®, Crystalline lens thickness, Posterior surface of crystalline lens

別刷請求先：457-8510 名古屋市南区三条1-1-10 社会保険中京病院眼科 前田征宏
(2006年10月18日受付)
Reprint requests to: Masahiro Maeda Dept of Ophthalmol, Social Insurance of Chukyo Hosp 1-1-10 Sanjo, Minami-ku, Nagoya 457-8510, Japan
(Received and accepted October 18, 2006)
1. 緒 言

遠視矯正下での近方の物体を見る際には調節を行うが、調節時には絞瞳・幅拡とともに毛様筋の収縮による水晶体の形状変化が生じる。この調節による水晶体の変化は年齢とともに次第に衰え、老視となる。白内障手術が進歩した現在、視力の回復は可能であるが、失った調節力の回復はいまだ然実に課題である。この白内障手術後調節力の喪失を克服すべく、調節眼内レンズ、lens refillingなどの方法が検討されている。

これらの調節眼内レンズや lens refilling に調節力があるかどうかを実験的に検証するため、人工的調節状態を作り出す目的でピロカルビンが用いられてきた。ピロカルビンは副交感神経刺激薬であり、副交感神経末端から放出されるアセチルコリンと同様の作用をもつ。眼球においては毛様筋、瞳孔括約筋に存在するムスカリン受容体に作用し、毛様筋の収縮および絞瞳を通す。日常臨床ではピロカルビン点眼薬、毛様筋収縮により強脈帯を下方に牽引し線維柱帯網を開大させて房水流出抵抗を減少させ眼圧を下降させるとともに、周辺虹彩を線維柱帯から引き離し隅角を開大するための前房内障の治療に広く用いられている薬剤である。

視覚刺激による調節反応では毛様筋の収縮および絞瞳が生じるため、屈折状態の実験でピロカルビンが用いられている。しかし、ピロカルビン点眼によっても水晶体の形状変化を来し、前房深度が減少するという報告はこれまでもあるが、視覚刺激による調節に伴う水晶体の変化と、薬剤刺激による調節に伴う水晶体の変化が果たして同じものかという報告は、これまで Koepple らの報告のみである。Koepple らは、視覚刺激による水晶体の変化がピロカルビンによる水晶体の変化が老年者では異なり、若年者では同様の変化を来すと報告している。

今回我々は AC Master®（Zeiss）を用いて、2% ピロカルビン（2% サンピロ）点眼後水晶体・前房深度の変化を測定し、視覚刺激および薬剤刺激による調節の違いを、水晶体体の調節に伴う変化および水晶体の角膜からの位置という観点で点眼後の時間経過とともに測定し、検討したので報告する。

AC Master® は 850 nm の半導体レーザー光をビームスプリッターで二つの光に分け、可動反射ミラーを用いて、一方の光路長を変化させることにより光路差を作り出し、光干渉することで光学的に角膜厚（以下 CT）、前房深度（以下 ACD）、水晶体厚（以下 LT）を測定する非接触型の前房部測定装置である。従来法を基準に差を内訳し、測定目標を注視する。検者は測定画面を見ながら観測目標を微調整を行う。測定時間は約 1 秒である。同様の測定原理を用いた眼圧測定装置に IOL Master®（Zeiss）があり、白内障手術前検査において眼圧長を正確に測定するために広く用いられている。

その測定原理や IOL Master® との違い、高い再現性、その他の原理を用いた機器との関係などが報告されている。正常眼における調節時の LT の変化が報告されている。AC Master® は、観測側での測定、調節負荷をかけた状態での測定が可能である。AC Master® では焦点距離からジョグバーを計算し、指標を本体内部で移動させることによって調節負荷を行っている。調節に伴い幅拡が生じるが、AC Master® は Purkinje-Sanson 第1、第3、4 像を重ね合わせることによりアライメントをとり測定を行うため、AC Master® は常に光軸上で測定を行うことができる。

2. 方 法

対象は屈折異常以外の眼疾患、手術歴および外傷歴をもたない健常者 10 例 10 眼で、男性 4 名（検査前平均等価球面度数 −1.9 ± 2.2 D，平均年齢 30.8 ± 4.3 歳）、女性 6 名（検査前平均等価球面度数 −2.0 ± 2.2 D，平均年齢 28.5 ± 4.5 歳）である。検眼は無作為に選び、右眼 4 眼、左眼 6 眼に対し、2% ピロカルビン点眼を用いて実験を行った。実験中は非検眼を遮蔽した。

2% ピロカルビン点眼の点眼回数による効果の違いをみるため、以下の二つの実験を行った。

1）1 回点眼実験

2% ピロカルビン点眼 1 滴を結膜囊に点眼し、点眼後 90 分後まで 15 分ごとに AC Master® を用いて ACD，LT を測定した。同時に内部指標による調節刺激を 0～4 D まで 0.5 D 刻みで与え、同様に ACD および LT を測定した。各測定直前に屈折検査を行い、完全矯正となるよう球面および円柱レンズを用いて矯正した。

2）2 回点眼実験

初回点眼から 5 分後に更に 1 滴点眼を追加し、1 回点眼実験と同様に 90 分後まで 15 分ごとに検査を行った。

1 回点眼実験と 2 回点眼実験は薬剤の残存効果を
除去するため, 1 週間以上の間隔をあけて行った。屈折検査時室内は 600 ルクス (lux), AC Master® 測定時室内は 0 lux であった。波長 850 nm の条件下では角膜, 前房水, 水晶体の屈折率はそれぞれ 1.3851, 1.3454, 1.4065 を用いている。ACD は涙液層から水晶体前面までの距離を, LT は水晶体前面から水晶体後面までの距離をあらわすため, ACD を水晶体前面の位置, ACD+LT を水晶体後面の位置として検討した。

3. 結　果

1）点眼後の近視化

2% ビロカルピン 2 回点眼後は全症例で近視化を来し, 平均で -2.2±1.5D の変化を認めた。性差は認めなかったが, 近視化の程度には -5.0 ～ -0.5D と個人差がみられた。その最大効果は 30～60 分後にみられた。

1 回点眼実験では個人差が大きく, 屈折変化を生じない症例も認めた。

2）点眼後の調節に伴う変化

ビロカルピン点眼後の LT の変化量を図 1, 2 に示す。

図 1 1 回点眼前調節荷重における水晶体厚の変化
横軸に調節負荷量, 縦軸に点眼後各経過時間の調節荷重量 OD を基準とした, 水晶体厚の変化量を示す。

図 2 2 回点眼前調節荷重における水晶体厚の変化
横軸に調節荷重量, 縦軸に点眼後各経過時間の調節荷重量 OD を基準とした, 水晶体厚の変化量を示す。

2% ビロカルピン点眼後も調節刺激を与えると LT は増加した。調節刺激 1～4D にかけて 1D 当たりの LT の変化量は, 1 回点眼実験においては点眼前後で LT の変化量に差を認めなかった (図 1) が, 2 回点眼実験においては点眼前の 5.1±7.3μm/D に比べ, 点眼後 15～90 分の間で 41.0±16.1～46.1±11.5μm/D とやや減弱する傾向があった (図 2)。

3）点眼後の水晶体厚

ビロカルピン点眼後の水晶体前面および後面の位置変化を図 3, 4 に示す。

2% ビロカルピン点眼後 15 分後には調節刺激を与えるとともに LT の肥厚を認めた。図 1 および図 3 で示す 1 回点眼実験では, 点眼後 90 分後には LT の戻りがみられが, 図 2 および図 4 で示す 2 回点眼実験では 90 分後も LT は増加したままであった。また, 点眼 15 分

図 3 1 回点眼後水晶体前面および後面の位置変化
横軸に点眼前の水晶体前面, 後面の位置を基準点とした変化量, 縦軸に点眼後の経過時間を示す。図では左に移動した場合, 基準点より角膜側に移動し, 右に移動した場合は基準点より後方側に移動したことを示す。

図 4 2 回点眼後水晶体前面および後面の位置変化
横軸に点眼前の水晶体前面, 後面の位置を基準点とした変化量, 縦軸に点眼後の経過時間を示す。図では左に移動した場合, 基準点より角膜側に移動し, 右に移動した場合は基準点より後方側に移動したことを示す。
後では水晶体前面の前方移動と後面の後方移動がみられ、その後水晶体全体が前方に移動する傾向があった。LTは点眼後45～60分後が最大となった。

4. 考 按

ピロカルピン点眼後の屈折変化についてはこれまでで30分後に最大となるという報告があるが、我々の測定でも類似の症例で近視化を来し、そのLTに与える最大効果は個人差があるが、2回点眼では点眼後30～60分以内に認められた。

AC Master*を用いた通常眼における調節刺激を与ええた実験では、水晶体前面が前方移動し、水晶体後面が大きく動くことはないという結果を過去に我々は報告した。また、他の報告でも正常水晶体の調節時の変化では、水晶体後面はほぼ静止もしくは後方に移動しているという報告も。

ピロカルピン点眼におけるLTの変化は薬剤負荷をしない場合と異なり、点眼15分後には水晶体前面が前方移動し、後面が後方へ移動する傾向にあった。その後点眼後30分過ぎから水晶体全体が前方に移動し、後面も前方に移動した。LTは30～60分後に最大となり、その後LTは減少した。これは通常の調節時における水晶体の動態と異なり、点眼後水晶体の位置および厚みが時間とともに変化していることを示す。

また、点眼によりLTが変化しても、更に調節刺激を与えるとLTは変化し、2%ピロカルピン2回点眼においても調節能力が消失していないことがわかる。

AC Master*による測定の再現性は、他の前眼部測定装置と比べ高く、測定誤差は数μm程度と山井らは報告しており、今回の結果は装置の測定誤差ではないため、薬剤の作用によるものであると考えられる。

ピロカルピンはこれまでも、調節状態を人工的に作り出すために広く用いられているが、水晶体後面が視覚刺激による調節時と異なり前方に移動することが本実験で明らかとなった。また点眼後の経過時間とともに水晶体の変化、厚みが変化しており、調節力は減弱する傾向を認めるが、まだ自己の調節力が残存していることが明らかとなった。

内障手術後の調節力の喪失を克服するため、調節機能をもった眼内レンズを開発・検討する際に、薬剤を用いて調節力・調節状態を測定する場合は、水晶体の形状および位置に与える薬剤の影響を考慮すべきことが示唆された。

文 献
白内障環境下におけるディスプレイ装置に対する色覚特性に関する研究

藤田 徹也*, 中嶋 芳雄**, 高松 衛**
*富山大学芸術文化学部, **富山大学大学院工学研究科

Properties of Color Vision in Video Display Terminals in the Cataractous Vision Environment

Tetsuya Fujita*, Yoshio Nakashima**, Mamoru Takamatsu**
*Faculty of Art and Design, University of Toyama,
**Graduate School of Science and Engineering, University of Toyama

本研究では白内障環境下における色覚特性を求めるために、色覚閾値法（低輝度領域）および明るさマッチング法（中輝度領域）を用いて、示した刺激光に対する視覚者対象を白内障再現ゴーグルを装着した場合とそうでない場合について測定した。実験の結果、ディスプレイ装置（VDT）における青色（HSV色相240°）を中心とする色相領域は通常時でも感度が比較的低く、白内障環境下では更に感度の低下がみられた。この傾向は中輝度領域でより顕著であった。換言すると、比感度はHSV 色相210°～270°の領域で低下するが、B成分に対してRまたはG成分が等分以上含まれる位相領域では感度が改善されることが定量的に明らかになった。よって、白内障の人に対してVDT上で情報指示を行う際に、黒色を背景色とした画面において青系統の色を表示色として単独で使用する場合、その視覚特性に関する可能性があることがわたった。

（視覚の科学 28: 26-30, 2007）

キーワード：白内障環境，白内障再現ゴーグル，ディスプレイ装置，色覚閾値法，明るさマッチング法

In this experiment, to evaluate the color vision properties characteristic of cataract, we measured test stimulus light circle sensitivities using the color vision threshold method (low brightness range) and the brightness matching method (middle brightness range), corresponding to both normal state and goggle-equipped cataract state. The results show that sensitivity turned relatively low in the blue region (HSV hue 240 degrees), and especially low in the cataractous vision environment. This tendency was more remarkable in the middle brightness range. In other words, relative sensitivity decreases in the HSV hue region from 210 to 270 degrees, but this loss can be recovered by increasing R or G component light, so as to be greater that B component light. Therefore, it becomes clear that, to people with symptoms of cataract, video display terminal (VDT) low visibility might occur when blue or blue-region color is used as foreground against a black background.

Key Words: Cataractous vision environment, Cataract experiencing goggle, Video display terminal, Color vision threshold method, Brightness matching method

別刷請求先：933-8588 高岡市二上町180 富山大学芸術文化学部 藤田 徹也
(2007年1月5日受付)
Reprint requests to: Tetsuya Fujita Faculty of Art and Design, Univ of Toyama 180 Futagami-machi, Takaoka 933-8588, Japan
(Received and accepted January 5, 2007)
1. 緒 言

水晶体の加齢変化すなわち黄変化・白渦化などを要因とする色覚の劣化は、すべての人には起こり得る老化現象の一つである。その程度が進行し、光の透過程が制限される症状が老眼性白内障である。白内障患者的眼球の水晶体の光透過率は、とくに400〜500nmの短波長領域で著しく低下することが知られている。高齢社会の到来を迎え、このような老化による色覚障害への対応は重要な課題の一つとなっている。

ところで近年、情報表示装置としてディスプレイ装置（以下 VDT）が普及し、コンピュータだけでなく、銀行のATMや空港のチェックイン端末などに広く用いられるようになった。また、VDTに表示される画面のデザインおよびインタフェースについては、JIS X 8341-2の規定にみられるように高齢者や障害者などに配慮した配色・画面設計の指針が標準化されている。しかし、依然としてその配慮が十分でないケースが多いのが現在であり、視覚パリアフリーに向けての取り組みが求められている。

一方、これまでの白内障視環境下における色の見え方を定量的で研究において、標準色票などの物体色を観察する手法が多く用いられてきた。しかし、光源色であるVDTの色に対する見え方について言及した報告は極めて少ないのが現在である。

そこで本研究では、VDT画面表示色の最適化を図ることを目指して、白内障再現ゴーグルを用いて、白内障視環境下における色覚特性に関する基礎的なデータを収集することを目的とする。

2. 実 験 方 法

本研究では白内障視環境下における色覚特性を求めるために、色覚関値法による低視度領域での実験（以下実験I）および明るさマッチング法による中視度領域での実験（以下実験II）を実施した。実験装置の概要は図1に示す。実験は暗室内にて行った。本実験では円形テスト刺激光をVDT（液晶ディスプレイ）の中央部に呈示する。実験IおよびIIにおける呈示画面はそれぞれ図1（b）、（c）のとおりである。被験者の頭部は頭部にて固定する。また被験者は、キーボード操作により、テスト刺激光の輝度を調整することができる。なお刺激光に対する表色系としては、コンピュータグラフィクスにおいて一般的に用いられるHSV表色系を用いた。HSV表色系はRGB加法色系を変換し、色相、輝度および彩度で表示したものである。そこで今回はRGB各255階調を、色相（0°〜359°）、輝度（0〜255）、彩度（0〜255）に対応させた。またRGB（赤、緑、青）からHSV（色相、彩度、輝度）への変換はSmithの定義（円錐モデル）を採用した。

実験Iでは、被験者は図1（b）のテスト刺激光のHSV輝度をV=82（白色光で10cd/m²に相当）から徐々に減少させ、刺激は検出できるが色みがわかるとならない点（色覚関値）で応答する。また実験IIでは、図1（c）のテスト刺激光のHSV輝度を調整して、左側の白色参照光（15cd/m²）と明るさが同一と感じられる点で応答する。この手順を、白内障再現ゴーグルを装着した場合（白内障視環境下）とそうでない場合において実施する。このゴーグルは70歳代以降にみられる強度の老眼性白内障をシミュレートしたものである。

測定に使用したテスト刺激光は、HSV色相で0°か
表1 HSV輝度 V=97(白色光15cd/m²相当)におけるxy色度

<table>
<thead>
<tr>
<th>表示色</th>
<th>色度 (CIE1931 XYZ 表色系)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSV色相</td>
<td>色度 (cd/m²)</td>
</tr>
<tr>
<td>0°</td>
<td>R</td>
</tr>
<tr>
<td>30°</td>
<td>RY</td>
</tr>
<tr>
<td>60°</td>
<td>Y</td>
</tr>
<tr>
<td>90°</td>
<td>YG</td>
</tr>
<tr>
<td>120°</td>
<td>G</td>
</tr>
<tr>
<td>150°</td>
<td>GC</td>
</tr>
<tr>
<td>180°</td>
<td>C</td>
</tr>
<tr>
<td>210°</td>
<td>CB</td>
</tr>
<tr>
<td>240°</td>
<td>B</td>
</tr>
<tr>
<td>270°</td>
<td>BM</td>
</tr>
<tr>
<td>300°</td>
<td>M</td>
</tr>
<tr>
<td>330°</td>
<td>MR</td>
</tr>
<tr>
<td>-</td>
<td>W</td>
</tr>
</tbody>
</table>

3. 結 果

実験結果を図3に示す。図3(a)は色覚閾値法 (実験I) による実験における色覚閾値 (HSV輝度) を、また図3(b)は明るさマッチング法 (実験II) における被験者観測値を、ゴーグル装着時およびそうでない場合についてHSV色相の位相順にプロットしたものである。なお、図3 (a)の右端には基準光としての白色(W)のデータも合わせてプロットした。点線はゴーグル装着時、細実線はそうでない場合の各被験者の平均値を示す。実験結果は前の実験、三角実線は後者の場合の被験者の平均値を示す。ここで両平均値の差 (dT) は内障を再現ゴーグル装着による、すなわち白内障による影響をあらわすものとなる。

色覚閾値法による実験 (実験I) の結果、白内障視環境下ではそうでない場合に比べて、すべての
HSV色相において関値の上昇、すなわち感度の低下がみられ、感度の低下はすべての色相において有意であった（p < 0.001, Wについてはp < 0.005）。なお、本稿では感度低下の検定手法としてt検定を用いている。色相別の分布をみると、Y(180°), M(300°)において極小値をとる一方、R(0°)およびB(240°)においては極大値を示している。とくに白内障視環境下ではBにおける関値の上昇、すなわち感度低下の度合いが大きく、Bでの関値差はBM(270°)を除いた各色相の関値差と比較して有意に大きい（p < 0.01, MR(330°))についてはp < 0.05）結果が得られた。

明るさマッチング法による実験（実験II）においても色覚閾値法による実験においても同様の結果が示された。すなわち、すべての色相において有意な感度の低下がみられ（p < 0.001）、色相別分布では、Y、R、C、Mで極小値をとり、したがってBで極大値をとっている。また、実験Iにおいても青系統（210°～270°）の位相領域における感度の低下がみられたが、実験IIではこの領域における白内障視環境下での被験者応答値が急激に上昇しており、CB(210°)、B、BMにおける被験者応答値差は、他の色相における応答値差と比較して有意に大きい（p < 0.001）。よって中輝度の白内障視環境下では、青系統の位相領域における感度低下の傾向がとくに顕著であることが明らかになった。

4. 考 按

図4は、実験Iおよび実験IIで得られた実験結果の傾向をよりわかりやすく表示したものである。すなわち図4（a）のヒストグラムは、図3（a）（実験I）における白色に対する関値差d(T(W))を各色相のd(T(H))で割ったものである。また図4（b）のヒストグラムは、図3（b）（実験II）における青色に対する応答値差d(T(B))を各色相のd(T(H))で割ったものである。これらの関値値に対する感度に相当するものである。図4より、青系統での感度低下が著者がえ。一方、横軸の表示色相をR、G、B各色の階調値の比率を表示したものを横軸の下のプロック図として示す。実験Iおよび実験IIのいずれの場合においても、青色の光源に対して、赤色または緑色の光が等分以上の比率で含まれる位相領域では感度が向上していることがわかる。とくに実験Iと比較した場合、実験IIにおいてその程度が著しい。

本実験は低·中度の輝度および照度の条件下での実験であるが、白内障の人に対してVDT上で情報呈示を行う際には、黒色を背景色として画面において青系統の色を表示色として単独で使用する場合、コントラストの低下によってその視認性に問題を生じる可能性があることがわたった。その対策の一つとして、光源となる青色光の輝度の上方補正が有効であると考えられる。

例えば、実験IIにおけるR、G、Bの各光源色のゴール装着による被験者応答値の増加率はそれぞれ1.14、1.20、1.63であるから、青色光の増加率も他の光源色と同等の1.14～1.20にするためには、青色光におけるゴール装着時の被験者応答値の平均値161.4を113.0～118.9の範囲にまで減少させる必要がある。

図5は図2に基づき、HSV輝度80～170の領域におけるR、G、B各色のCIE輝度の測光値を、最小二乗法による2次近似曲線として表示したものである。また、図中にはR、G、B各色に対する被験者応答値の平均値g(R)，g(G)，g(B)（ゴール装着時）、n(R)，n(G)，n(B)（そうでない場合）に対応した点を示す。g(G)
のCIE輝度は近似式より7.24 cd/m²となる。このとき青色光に対する望ましい被験者観測値g'(G)のHSV輝度をH=115と仮定すると、このHSV輝度値に対する補正前の青色光CIE輝度は近似式より3.66 cd/m²となるから、このHSV輝度において7.24 - 3.66 = 3.58 cd/m²の上方補正が必要であることがになる。ただし、この補正值はあくまでも実験IIのデータに基づいて算出されたものに過ぎない。青色光に対する適切な補正值および補正関数を決定するためには、より多くの実験データを収集・分析し、更に青色光が補正された環境下での実証テストが必要である。

また、液晶ディスプレイのように白色バックライト光をフィルタリングして表示する種類のVDTでは、上限を超えて青色光の輝度を補正することができない場合がある。この場合は、図4に示されているとおり、青系統の代わりに、表示色として他の光源色が青色に対して同等以上の割合で含まれるHSV色相領域の色を使用すると感度が向上し、視認性を改善する効果があると考えられる。

文　献

3. 日本工業標準調査会：高齢者・障害者等配慮設計指針－情報通信における機器、ソフトウェアおよびサービス一第2部：情報処理装置、日本規格協会、東京、2004.
網膜内因性信号測定装置

（東京医療センター臨床研究センター，理化学研究所脳機能研究チーム）

花園 元
（株）ニデック
（株）ニデック

柴田 尚久
（理化学研究所脳機能研究チーム）

檜枝 紹生
谷藤 学

（東京医療センター臨床研究センター，理化学研究所脳機能研究チーム）

角田 和繁

1. はじめに

眼科における画像診断技術は近年、目覚ましい進歩をとげてきた。たとえば光干涉断層計（以下OCT）は、検眼鏡によって捉えることのできない網膜細胞構造の観察を可能にするものであり、網膜疾患の診断、治療に関する従来の常識を一変させるほど臨床応用価値の高いものである。しかしOCTや、走査型レーザー検眼鏡（SLO）などの画像診断法は解剖学的構造の把握を目的としており、これによって微細胞をはじめとする網膜の神経活動を捉えることはできない。したがって、網膜機能（神経活動）の他覚的評価のためには、動電生理的検査である網膜電図（ERG）が今でも重要な役割を果たしている。

我々のグループでは、神経活動（神経活動）に伴って組織の光反射率が変化する現象を利用した計測法（内因性信号計測法）を眼底に応用し、網膜の神経活動を非侵襲的にイメージングする方法を開発することに成功した（網膜内因性信号測定装置：Functional Retinography）。

2. 測定原理

網膜内因性信号測定装置では、神経活動に伴って神経組織の微細構造や光反射率が変化する現象を利用している。実際の計測法は、神経組織をcharge-coupled device（以下CCD）カメラでイメージングし、刺激前と刺激後の画像を重ね合わせて比較するという非常に単純なものである。刺激後に画像の明るさが変化している部分が神経活動の起きた領域に相当し、通常は神経活動の高い領域がより暗くみえる（図1）。

3. 測定方法

開発のための動物実験では、ヒトとほぼ同じ解剖学的構造をもつニホンザル、アカゲザルの眼底を用いている。全身麻酔下において非動化した眼底を、ニデック製眼底カメラを改良した観察系を用いて

図2 網膜内因性信号計測装置の外観

図1 内因性信号の計測方法

図3 網膜内因性信号計測装置の概要
CCD カメラでモニターする（図 2, 3）。眼底観察用のハロゲン光は、赤外線フィルターを透過して眼底後極部を照明する。像高解像度640×480ピクセル、毎秒30フレームのCCDカメラによって眼底からの光反射率変化を繰り返し記録する。測定開始から0.5秒後に眼底後極部全体を白色キセノンフラッシュにて刺激する。1回の測定は通常3〜10秒間行う。

刺激前0.5秒間の平均画像の反射率と、刺激後の画像における反射率の比をピクセルごとに計算し、その比を256階調にスケーリングし画像化する（図4）。

4. 測定結果

フラッシュによるびまん性刺激によって視細胞が活動すると、網膜全体の反射率が低下し画像では黒く描出される。この内因性信号は刺激後150msecにピークをもつ早い反応で、中心窩で最も強か。信号強度を疑似カラーで表示すると、明視応答下では中心窩に内因性信号の急激なピークを認め、周辺部に向かって減少する（図5）。暗視応答下では中心窩に加えて周辺部にドーナツ状のピークを認める（図6）。内因性信号のピークは中心窩では錐体視細胞に、周辺部では桿体視細胞の解剖学的な分布によく一致しており、網膜内因性信号は網膜外側の機能をよく反映していると思われた。

5. 網膜内因性信号のバリエーション

前項では、観察光として赤外光、刺激としてびまん性フラッシュ刺激を用いた例を挙げてきたが、網膜内因性信号計測装置は、測定条件・刺激条件を様々な変化させることで信号起源の異なる反応を測定することができる。

1) 局所刺激による内因性信号

網膜内因性信号計測装置の眼前部と上部にフィルターを設置することで局所フラッシュ刺激を
網膜内因性信号測定装置

図8 フラッシュ刺激に対する内因性信号

図9 カラーフィルターを用いて測定した褪色反応のトポグラフィ（上：570nm 下：630nm）

図10 フラッシュ刺激に対する内因性信号（ヒト網膜、覚醒下）

ほぼ同程度の内因性信号がみられた。信号分布は明暗応および暗順応の状態でも変わりはなく、信号発生の起源として網膜内層の寄与が大きいと思われる。

6. まとめ

網膜内因性信号計測装置の原理・測定方法および可能性について測定結果を挙げて述べた。覚醒下のヒトでは、測定は可能なものの動物眼での安定した結果を得るには至っていない（図10）。しかし近い将来臨床応用が実現すれば、網膜神経機能の客観的な評価法として疾患の早期発見や早期治療につながることが期待される。

参考文献

第18回 日本眼科学会専門医認定試験問題解答と解説
（眼光学・屈折・調節関係）

東京医科歯科大学 所 敬

第18回 日本眼科学会専門医試験は2006年6月9日（金）、10日（土）の2日間にわたり全共連ビルと日本海運倶楽部で行われた。眼光学・屈折・調節関係の問題は一般問題100題中11問、臨床問題50題中1問であった。昨年に比べて多く出題された。

一般問題 100問中11問

4 照準線と瞳孔中心線をなす角はどれか。
 a a角 b b角 c c角 d c角 e Ⅰ角
 解答：e

解説

眼球の軸と角度との関係は下図（魚里 博：第4章 眼球光学，西信元嗣編，眼光学の基礎，127，図Ⅳ-3，金原出版，東京，1999から引用，改変）のごとくである。

14 cd/m²が単位として用いられることはどれか。
 a 輝度 b 光度 c 彩度 d 照度 e 明度
 解答：a

解説

光度の単位はcd, 照度の単位はlx, 彩度は色の「鮮やかさ」の度合いを純色100として、混合された純色成分の比率、明度は黒を0, 白を10としたときの明るさの度合いを示す。

64 屈折で正しいのはどれか。2つ選べ。
 a 不正乱視は眼鏡で矯正可能である。
 b 單色光線では色収差は起こらない。
c コントラスト感度は夜間視力を反映する。
d 2mmの瞳孔径では回折現象により解像力は低下する。
e 5mmの瞳孔径では角膜の球面収差は視力に影響しない。
解答：b, c

不正乱視は角膜、水晶体などで起こるが、いずれも眼鏡では矯正できない。角膜不正乱視はコンタクトレンズで矯正可能なことが多い。単色光線ではSeidel収差は起こるが、色収差は起こらない。夜間ではコントラストが低下するのでコントラスト感度を反映する。理想的な瞳孔径は2.4mmといわれていて、2mmの瞳孔径では解像力は低下しない。5mmの瞳孔径では球面収差が視力に影響する可能性がある。

65 角膜形状解析が診断に有用なのはどれか。2つ選べ。
a 円錐角膜
b 水疱性角膜症
c ベルーシド角膜辺縁変性
d 格子状角膜ジストロフィ
e 膠原線状角膜ジストロフィ
解答：a, c

図膜形状解析は図膜前面に不正乱視があるときに有用な検査法である。円錐角膜は図膜が突出し、図膜の変形がみられる疾患、ベルーシド角膜辺縁変性は角膜辺縁透明変性ともいわれ、図膜下方の周辺（図膜根部から2mm程度上方）が突出し、4時～8時付近の水平に細長い部位の図膜が非薄化する疾患で、非炎症性で円錐図膜の類似疾患とされている。水疱性角膜症は角膜内皮細胞障害、格子状角膜ジストロフィと膠原線状角膜ジストロフィは図膜実質に混濁のみられる疾患である。

65 白内障手術で、+22.00Dの眼内レンズ挿入を予定していた。術中に後囊を破損したため、囊外に挿入することとした。
目標術後屈折度数に近づけるために眼内レンズ度数はどれか。
a +18.00D b +20.50D c +22.00D d +23.50D e +26.00D
解答：b

眼の屈折度は角膜屈折力と水晶体屈折力で決まる。角膜屈折力をD₁ = 40D、眼内レンズ屈折力をD₂ = 22D、前房深度（mm）（図膜頂点から眼内レンズ前面までの距離）をd（囊内固定の場合を4mm[4/10^3]、囊外固定の場合は2mm[2/10^3]とすると）、前房水の屈折率をn = 1.336とすれば、眼の全屈折力D（D）は

\[D = D₁ + D₂ - \frac{d}{n} D₁ \cdot D₂ \]

であらわせる。前房深度が4mmのとき第3項は

\[\frac{d}{n} D₁ \cdot D₂ = \frac{4}{1.336 \times 10^3} \times 40 \times 22 = 2.6 \]

となる。前房深度が2mmになると、この値は1.3になり、22 - 1.3 = 20.7(D)
となり、bが妥当である。

66 視力が0.9から1.0に上昇した視力比と0.1から0.2に上昇した視力比との割合で最も近いのはどれか。
 a 1:1 b 1:3 c 1:4 d 3:4 e 5:9
 解答：e

 視力が0.9から1.0に上昇した視力比は1.0/0.9=1.1, 0.1から0.2に上昇した視力比は0.2/0.1=2である。1.1:2=1:1.8=5:9になる。

68 波面高次収差で正しいのはどれか。2つ選べ。
 a 正視眼では少ない。
 b 加齢に伴い増加する。
 c コマ収差が含まれる。
 d 視機能評価に用いられない。
 e 角膜屈折矯正手術で増加する。
 解答：正答はb, c, e であり、不適切問題と思われる。

波面高次収差は正視眼で少ないとは限らない。加齢に伴い水晶体の変化が起こり、波面高次収差は増加する。コマ収差や球面収差は波面高次収差に含まれる。最近では視機能評価に用いられている。角膜屈折矯正手術には角膜を手術の場としたものが含まれる（laser in situ keratomileusis (LASIK), photorefractive keratectomy (PRK), laser epithelial keratomileusis (LASEK), radial keratotomy (RK)など）ので術後に増加する。以上から正答はb, c, e となり、正答はないと考える。b, c は問題ないので、出題者は角膜屈折矯正手術を wavefront-guided LASIK を想定していたのであろうか。

69 0.50D のクロスシンダはどれか。
 a +0.50D∽cyl−0.50D
 b +0.50D∽cyl−1.00D
 c +0.50D∽cyl+0.50D
 d +0.50D∽cyl+1.00D
 e +1.00D∽cyl−0.50D
 解答：b

0.50D のクロスシンダは−0.50D の円柱レンズの軸と+0.50D の円柱レンズの軸を直角に組み合わせたレンズである。

\[-0.50D \hspace{1cm} +0.50D\]

— 36 —
両眼ともに正視で調節力が 1.00D の人に、近用部に 3.00D を加入した二重焦点眼鏡を処方した。
この眼鏡で明視できない範囲はどれか。
a 33 cm〜25 cm まで
b 1 m〜33 cm まで
c 2 m〜1 m まで
d 3 m〜2 m まで
e 5 m〜3 m まで
解答：b

正視で 1.00D の調節力があれば、無限遠〜1 m まで明視できる。二重焦点レンズの近用部に 3.00D のレンズを
加入すれば、このレンズによる遠点は33cmで、調節力が1.00D あるので、3.00 + 1.00 = 4.00D すなわち25 cm ま
で見える。したがって、二重焦点レンズの遠用部では無限遠〜1 m までと、33 cm〜25 cm までが明視可能であ
る。そこで、1 m〜33 cm の間が明視できない範囲である。

乳児の視力検査で正しいのはどれか。2つ選べ。
a Landolt 環字ひとつ視標
b PL 視力検査器
c 線視力カード
d 点視力カード
e 森実式ドットカード
解答：b, c

Landolt 環字ひとつ視標で測定できるのは3歳以降である。点視力カードや森実式ドットカードは幼児に用い
られる。乳児には PL 視力検査器や線視力カード（Teller acuity cards など）が使われる。

電気性眼炎の原因となるのはどれか。
a 短波長紫外線
b 長波長紫外線
c 可視光線
d 近赤外線
e 遠赤外線
解答：a

電気性眼炎は角膜障害である。紫外線は短波長紫外線（UVC 290 nm）、中波長紫外線（UVB 291〜320 nm）、
長波長紫外線（UVA 321〜400 nm）に分けられる。UVC はオゾン層で吸収されて、地表には到達しない。UVA
は水晶体まで到達して白内障の原因になる。UVB は角膜で吸収されて角膜障害の原因になる。設問には中波長
紫外線はないので、a でよいと思われる。

臨床問題 50問中 1 問

正視眼の Amsler チャート検査時、チャートを網膜に投影したものを別図24に示す。
正しいのは別図のどれか。
a ①
b ⑥
c ⑤
d ④
e ⑥

解答：c

Amsler チャートは検査距離 28～30 cmで、20°×20°に 1°おきに引かれた基盤の目からなり、中心視野異常を検出する表である。中心窩～乳頭までは約 15°、乳頭の横径は約 5°、縦径は約 7°であるから、網膜に投影される像は中心窩から鼻側、耳側に 10°ずつになるので、正答は c になる。
第36回 視能訓練士国家試験問題解答と解説
（眼光学・屈折・調節関係）

東京医科歯科大学 所 敬

第36回 視能訓練士国家試験問題中、眼光学・屈折・調節関連問題の解答と解説を述べる。

午前

7 加齢による遠視視力低下の主な原因はどれか。
 a 角膜内皮細胞減少
 b 水晶体混濁
 c 毛様体筋力低下
 d 網膜視細胞減少
 e 視神経伝達遅延
解答：b

解説

加齢による生理的遠視視力低下には、水晶体透過性低下、網膜視細胞減少も関係するが、主な原因としては網膜〜中枢までの機能低下ともいわれている。加齢によるとは生理的変化を意味するようにも思われるが、水晶体混濁は白内障という疾患も想定される。加齢により白内障が起こり、遠視視力低下が起こると考えるのか、問題としてはやや不適切と思われる。

15 視力検査で正しいのはどれか。
 a 検査室の明るさは、1,000 lux以上とする。
 b 標準視力表の視標と背景の白地とのコントラストは90%以上とする。
 c 字づまり視力表では被検眼の位置を視標0.5の高さに合わせる。
 d 幼児では字づまり視力表を用いる。
 e 近視視力の標準検査距離は40 cmとする。
解答：b

解説

検査室の明るさは、50 lux以上で視標輝度をこえないことである。字づまり視力表は被検眼の位置を1.0の視標の高さに合わせることになっている。読み分け困難があるため、6〜8歳までは字ひとつ視力表を用いる。近視視力の標準検査距離は30 cmである。

19 視覚的補助具のうち光学的補助具でないのはどれか。
 a 単眼鏡
 b 拡大鏡
c 弱視眼鏡
d 強度凸レンズ
e タイポスコープ
解答：e

単眼鏡、拡大鏡、弱視眼鏡、強度凸レンズは光学的補助具である。タイポスコープとは紙などに適当な窓を開けて、読んだり、書いたりする位置を限定して、見やすくするものである。

24 明所視比視感度のピーク波長 (nm) はどれか。
 a 780 b 555 c 507 d 430 e 380
 解答：b

明るさの感度は波長によって決まる。最大感度を 1 として比較値で示したのが比視感度である。明所視での最高比視感度は波長 555 nm、暗所視では 510 nm である。そこで、明所では黄緑が最も明るく見え、黄昏時には青緑が最も明るく見える。この現象を Purkinje 移動という。

27 視力 0.5 の Landolt 環の切れ目の視角はどれか。
 a 1分 b 2分 c 3分 d 4分 e 5分
 解答：b

視力は最小可視角（分）の逆数である。すなわち、視力 0.5 = 1 / 最小可視角（分）で最小可視角は 2 分になる。

28 小数視力 1.0 の logMAR（最小可視角の常用対数）はどれか。
 a -1 b 0.0 c 0.1 d 0.2 e 0.3
 解答：b

小数視力 1.0 の最小可視角は 1 分である。そこで、log 1 = 0 である。

31 図に示す収差はどれか。
 a 球面収差
 b コマ収差
 c 非点収差
 d 像面湾曲
 e 歪曲収差
 解答：a
その他の収差については、下図のごとくである。

32 誤っている組合せはどれか。
 a 照度——— lx
 b 驚度——— cd
 c 屈折力——— D
 d 立体視——— sec of arc
 e プリズム偏角—— Δ
 解答：b

cdは光度の単位で、輝度はcd/m²である。

33 屈折率が最も高いのはどれか。
 a 空気
 b 角膜
 c 房水
 d 水晶体
 e 硝子体
 解答：d

空気は1（正式には真空中）、角膜は1.376（同格屈折率1.3375）、房水1.336、水晶体（正式模型眼の同格屈折率1.409、略式模型眼1.413）、硝子体1.336である。

34 視軸と光軸のなす角はどれか。
 a α角 b β角 c γ角 d κ角 e λ角
 解答：a
視軸と光軸との関係は下図（魚里雄：第4章 眼球光学，西村元嗣編，眼光学の基礎，127，図IV-3，金原出版，東京，1999から引用，改変）のごとくである。

35 誤っているのはどれか。
 a 緊瞳すると網膜照度が低下する。
 b 緊瞳すると焦点深度が深くなる。
 c 緊瞳すると球面収差が大きくなる。
 d 緊瞳すると回折の影響が強くなる。
 e 2〜3 mm の瞳孔径で網膜像は最も鮮明になる。

解答：c

36 よく用いられる模型眼はどれか。
 a Bielschowsky
 b Goldmann
 c Gullstrand
 d Hirschberg
 e Snellen

解答：c

よく用いられる模型眼は Gullstrand 模型眼と Helmholtz 模型眼である。
37 非調節時の模型眼常数に最も近い組合せはどれか。
角膜前面
曲率半径（mm） 眼軸長（mm）
a 7.8 ———— 22.2
b 8.7 ———— 22.2
c 7.8 ———— 24.0
d 8.7 ———— 24.0
e 7.8 ———— 32.0
解答：c

Gullstrand 模型眼では角膜前面曲率半径は 7.7 mm、眼軸長は 24.0 mm である。

38 乱視で正しいのはどれか。
a 遠視性正乱視の最少範乱円は網膜面よりも後方にある。
b 近視性正乱視の後焦線は網膜面上にある。
c 難性乱視の前焦線は網膜面上にある。
d 近視性直乱視の前焦線は水平方向に収束する。
e 遠視性倒乱視の後焦線は垂直方向に収束する。
解答：正答は a, d であり、不適切問題である。

遠視性単乱視の前焦線は網膜面にあるので、最少範乱円は網膜より後方にある。近視性複乱視の後焦線が網膜上にあれば、近視性単乱視である。難性乱視は有数の経線は遠視、他の経線は近視であるので、前焦線は網膜面より前方にある。近視性直乱視では前焦線は水平、後焦線は垂直で、遠視性倒乱視では前焦線は垂直、後焦線は水平である。そこで、正答は a と d で 2 つあり、不適切問題である。

39 遠点および近点距離を測定した結果、角膜面より前方それぞれ 50 cm、12.5 cm であった。
コンタクトレンズによる完全補正度数を調節力を組合せで正しいのはどれか。
a 2.00D ———— 6D
b 2.00D ———— 8D
c 2.00D ———— 10D
d 2.00D ———— 6D
e 2.00D ———— 10D
解答：a

遠点が50 cmの完全補正度数は -2.00Dで、調節力は1/近点 -1/遠点であるから、1/0.125 -1/0.5 = 6(D)になる。
40 眼内レンズの度数決定に必要な検査はどれか。2つ選べ。
 a 視力
 b 色覚
 c 眼軸長
 d 調節力
 e 角膜屈折力
解答：c, e

解説
一般的な眼内レンズの度数の決定式には SRK 式がある。すなわち、P = A - 2.5L - 0.9K (P (D)：正視にするための眼内レンズの屈折力，A：眼内レンズのタイプによる常数，L (mm)：眼軸長，K (D)：強弱主経線上の角膜屈折力の平均値）である。

43 小数視力0.2に相当する縦視力を（cycle/degree）はどれか。
 a 1 b 2 c 4 d 6 e 10
解答：d

解説
縦視力を30で割ったものが小数視力である。したがって、0.2 = 縦視力/30であるから、縦視力は6 cycles/degreeである。

44 乳児の視力検査法で適切でないのはどれか。2つ選べ。
 a 視運動性観察
 b 視覚誘発電位
 c ドットカード
 d 並列視力表
 e preferential looking（PL）法
解答：c, d

解説
ドットカードは幼児に、並列視力表は6〜8歳以上で用いられる。

45 自覚的屈折検査で正しいのはどれか。
 a 検眼レンズの頂間距離は8mmである。
 b メニスカスレンズは表裏反転しても同様に使用できる。
 c 前線長が網膜面に一致する球面レンズ屈折力を求める。
 d 放射線乱視表の最も平で見える方向がマイナス円柱レンズの軸である。
 e 赤縁試験では緑色の視標がはっきり見えた状態にする。
解答：d
検眼レンズの頂間距離は12mm。眼鏡レンズ屈折力はレンズ後頂点から焦点までの距離の逆数で決まるので、メニスカスレンズは表裏反転して使用できない。放射線乱視表では後焦線を網膜面におき、凹円柱レンズで矯正する。クロスシンリンダーでは最小錯乱円が網膜上に一致する状態で円柱レンズを求める。赤緑試験では赤色の視標と緑色の視標が同じように見える状態にする。

46 自覚的屈折検査の結果を以下に示す。
(1.2×+1.75D)
(1.5×+2.00D)
(1.5×+2.25D)
(1.5×+2.50D)
(1.2×+2.75D)
屈折度はどれか。
a +1.75D b +2.00D c +2.25D d +2.50D e +2.75D
解答：d

最高の見力を得たプラス側のレンズを自覚的屈折度という。

47 角膜頂点から近点が前方20cm，調節力が3Dである。
遠点はどれか。
a 前方12.5cm
b 前方50cm
c 前方100cm
d 後方20cm
e 後方50cm
解答：b

近点が20cmであるので，調節力は5D必要である。調節力は3Dであるので，この眼は−2Dである。したがって，遠点は前方50cmにある。

70 ミドリンP®に含まれるのはどれか。2つ選べ。
a 硫酸アトロピン
b 塩酸オキシブロカイン
c 塩酸フェニレフリン
d 塩酸ビロカルピン
e トロピカミド
解答：c, e
ミドリンP®とは、トロピカミドと塩酸フェニレフリンとの合剤である。

74 コンタクトレンズの合併症はどれか。2つ選べ。
 a 老人環
 b 円錐角膜
 c 眼瞼下垂
 d 結膜フリクテン
 e 角膜内皮障害
 解答：c, e

酸素不足による角膜内皮障害、ハードコンタクトレンズに眼瞼下垂がみられることがある。

88 片眼のときよりも両眼開眼下で遠見裸眼視力が低下するのはどれか。
 a 斜位近視
 b 潜伏眼振
 c 不同視弱視
 d 調節性内斜視
 e 眼振抑制症候群
 解答：a

間欠性外斜視では片眼のときには視力が良好であっても、両眼視で眼位が正位になったときには強い幅満が働くので、調節の過緊張状態を引き起こし、視力は低下する。これを斜位近視という。

98 幼児期から学童期の屈折異常弱視の検査に適切な点眼薬はどれか。2つ選べ。
 a エピネフリン
 b トロピカミド
 c 硫酸アトロビン
 d 塩酸フェニレフリン
 e 塩酸シクロベントラート
 解答：c, e

小児の遠視の場合には、6歳未満では0.5％、6歳以上では1％アトロビンを両眼に1日3回3～7日点眼後に検査する。近視の場合には1％塩酸シクロベントラートを5分ごとに2回点眼して1時間後に検査する。
午後

8 眼鏡とコンタクトレンズとの比較で正しいのはどれか。
 a 屈折性近視の不同視では左右眼の像の大きさの差は眼鏡の方が大きい。
 b 軸性近視の不同視では左右眼の像の大きさの差は眼鏡の方が大きい。
 c 近視眼では調節は眼鏡の方が多く必要である。
 d 遠視眼では調節は眼鏡の方が少なくすむ。
 e 近視眼では幅差は眼鏡の方が多く必要である。
解答：a

眼鏡レンズは凸レンズでは拡大、凹レンズでは縮小があるため、屈折性近視では近視の程度が強い眼では像の縮小がみられるが、コンタクトレンズではレンズが角膜上にあるために、拡大・縮小は起こらない。軸性近視では軸位が長いと網膜像は大きくならが、眼鏡には縮小効果があるために、コンタクトレンズより拡大効果があらわれない。

眼鏡では見かけの調節があり、近視では調節は少なくよく、遠視では調節量は多く必要である。したがって、近視で近視の凹レンズ眼鏡では近方で正視眼に比べて調節は少なくよく、幅差方向にプリズム基底があるので幅差は少なくすむ。

10 二重焦点眼鏡が適応となるのはどれか。2つ選べ。
 a 屈折性調節性内斜視
 b 非屈折性調節性内斜視
 c 部分調節性内斜視
 d 非調節性幅差過多
 e 後天（基礎型）内斜視
解答：b, d

遠視を併用屈折性調節性内斜視は単焦点レンズでよい。部分調節性内斜視では単焦点レンズで矯正後、残余斜視角に対しては手術適応になる。後天（基礎型）内斜視は屈折矯正の適応にならない。非屈折性調節性内斜
視覚の科学 第28巻第1号

視はA/C比が高いもので二重焦点眼鏡の適応になる。非調節性幅満型内斜視は遠視眼位が正位または軽度の内斜視であるのに対し、近視では強い内斜視を示すもので、過剰な近接性幅満による内斜視である。これは、非屈折性調節性内斜視と似ているが、近見に+3.00D付加しても近見斜視角が改善しないことが非屈折性調節性内斜視との鑑別点ともいわれている。しかし、二重焦点眼鏡を装用させて経過をみる方法もあるので、2つ選ぶならばdになる。

34 7歳の女児。学校健診で視力障害を指摘され来院した。検査距離50cmで検影法を行った結果、45°方向は+4.0Dの検影レンズで、135°方向はレンズなしで中和した。

他覚的屈折度はどれか。
a cyl + 4.00D Ax45°
b cyl + 4.00D Ax135°
c + 2.00D = cyl - 2.00D Ax45°
d + 2.00D = cyl - 4.00D Ax135°
e + 2.00D = cyl - 4.00D Ax45°

解答：e

解説

検査距離が50cmであるから、検影レンズなしで中和すれば-2.00D、検影レンズ+2.00Dで中和すれば正視である。したがって、検影レンズ度から2.00Dを引いた値がその眼の屈折度になる。そこで、この問題での屈折度は

\[-2.00D \quad +2.00D\]

であるので、eが正解である。